
A*-1	

© Gunnar Gotshalks!

A* Algorithm!
!
!

A*-2	

© Gunnar Gotshalks!

Basics of A* algorithm!

◊  You are in the middle of a search and have a set of
potential paths P1 .. Pn to explore.!
» How do you select the best path to extend?!

A*-3	

© Gunnar Gotshalks!

Basics of A* algorithm – 2!

◊  You are in the middle of a search and have a set of
potential paths P1 .. Pn to explore.!
» How do you select the best path to extend?!

> For the last node on each path have two costs!

» What are they?!

A*-4	

© Gunnar Gotshalks!

Basics of A* algorithm – 3!

◊  You are in the middle of a search and have a set of
potential paths P1 .. Pn to explore.!
» How do you select the best path to extend?!

> For the last node on each path have two costs!

» What are they?!
>  (1) the real cost of following the path!

•  g(n) where n is the last vertex in the path	

A*-5	

© Gunnar Gotshalks!

Basics of A* algorithm – 4!

◊  You are in the middle of a search and have a set of
potential paths P1 .. Pn to explore.!
» How do you select the best path to extend?!

> For the last node on each path have two costs!

» What are they?!
>  (1) the real cost of following the path!

–  g(n) where n is the last vertex in the path ���
	

>  (2) a heuristic estimate of the cost of the optimal
extension of the path to the goal vertex!

•  h(n) where n is the last vertex in the path	

A*-6	

© Gunnar Gotshalks!

Basics of A* algorithm – 5!

◊  You are in the middle of a search and have a set of
potential paths P1 .. Pn to explore.!
» How do you select the best path to extend?!

> For the last node on each path have two costs!
–  (1) the real cost of following the path	

•  g(n) where n is the last vertex in the path	

–  (2) a heuristic estimate of the cost of the optimal

extension of the path to the goal vertex	

•  h(n) where n is the last vertex in the path ���
	

» The estimated cost for the full path to the goal is!
>  f(n) = g(n) + h(n)!

A*-7	

© Gunnar Gotshalks!

Basics of A* algorithm – 3!

• • •S N G• • •

g(N)! h(N)!

S .. N is the known path!
 g(N) is its real cost!

S .. G is the solution path!
total estimated cost is!
 f(N) = g(n) + h(N)!

N .. G is the path yet to be found!
 h(N) is its estimated cost!

A*-8	

© Gunnar Gotshalks!

Bratko Figure 12.2!

h(n) in magentag(n) in cloverf(n) in mocha +=

F

S

E G

A B C D

T
2

5 2 2

2

2 2 3

3

7 = 2 + 5 8 = 4 + 4 10 = 6 + 4 12 = 9 + 3

9 = 2 + 7 11 = 7 + 4 11 = 9 + 2
11 = 11 + 0

Put "write('Case1 '), S=[N|P], write(S), nl,” just before "goal”!
in expand case 1 to see the sequence in which the path is expanded.!

A*-9	

© Gunnar Gotshalks!

A* data structures – leaf node!

◊  A leaf is a single node tree – l (N , F / G)!

Lower case L!

A*-10	

© Gunnar Gotshalks!

A* data structures – leaf node – 2!

◊  A leaf is a single node tree – l (N , F / G) 
!
» N is a node in the state-space!

A*-11	

© Gunnar Gotshalks!

A* data structures – leaf node – 3!

◊  A leaf is a single node tree – l (N , F / G) 
!
» N is a node in the state-space  
!

» G = g(n) is the cost of the path to N!

A*-12	

© Gunnar Gotshalks!

A* data structures – leaf node – 4!

◊  A leaf is a single node tree – l (N , F / G) 
!
» N is a node in the state-space  
!

» G is the cost of the path to N!

» F is f(N) = G + h(N) 
!

A*-13	

© Gunnar Gotshalks!

A* data structures – tree!

◊  A tree – t (N , F / G , Sub-trees) 
!

A*-14	

© Gunnar Gotshalks!

A* data structures – tree – 2!

◊  A tree – t (N , F / G , Sub-trees) 
!
» N is a node in the state-space  
!

A*-15	

© Gunnar Gotshalks!

A* data structures – tree – 3!

◊  A tree – t (N , F / G , Sub-trees) 
!
» N is a node in the state-space  
!

» G = g(n) is the cost of the path to N!

A*-16	

© Gunnar Gotshalks!

A* data structures – tree – 4!

◊  A tree – t (N , F / G , Sub-trees) 
!
» N is a node in the state-space  
!

» G = g(n) is the cost of the path to N!

» F is the updated value of f(N)!
>  f-value of the most promising successor of N  
!

A*-17	

© Gunnar Gotshalks!

A* data structures – tree – 5!

◊  A tree – t (N , F / G , Sub-trees) 
!
» N is a node in the state-space  
!

» G = g(n) is the cost of the path to N!

» F is the updated value of f(N)!
>  f-value of the most promising successor of N  
!

» Sub-trees is a list of the sub-trees from N!

A*-18	

© Gunnar Gotshalks!

Example for Figure 12.2!

When S is expanded, the existing tree is represented as  
!

!t (S , 7 / 0 , [l (A , 7 / 2) , l (E , 9 / 2)])!

h(n) in magentag(n) in cloverf(n) in mocha +=

F

S

E G

A B C D

T
2

5 2 2

2

2 2 3

3

7 = 2 + 5 8 = 4 + 4 10 = 6 + 4 12 = 9 + 3

9 = 2 + 7 11 = 7 + 4 11 = 9 + 2
11 = 11 + 0

A*-19	

© Gunnar Gotshalks!

Example for Figure 12.2 – 2!

t (S , 7 / 0 , [l (A , 7 / 2) , l (E , 9 / 2)])!
!
The most promising node to expand is A!

h(n) in magentag(n) in cloverf(n) in mocha +=

F

S

E G

A B C D

T
2

5 2 2

2

2 2 3

3

7 = 2 + 5 8 = 4 + 4 10 = 6 + 4 12 = 9 + 3

9 = 2 + 7 11 = 7 + 4 11 = 9 + 2
11 = 11 + 0

A*-20	

© Gunnar Gotshalks!

After S and A have been expanded we have!
!
t (S , 9 / 0 , [l (E , 9 / 2)] , t (A , 10 / 2 , [t (B , 10 / 4 ,  
 [l (C , 10 / 6)])])]) !
!

Example for Figure 12.2 – 3!

Updated – E is the most promising successor!

h(n) in magentag(n) in cloverf(n) in mocha +=

F

S

E G

A B C D

T
2

5 2 2

2

2 2 3

3

7 = 2 + 5 8 = 4 + 4 10 = 6 + 4 12 = 9 + 3

9 = 2 + 7 11 = 7 + 4 11 = 9 + 2
11 = 11 + 0

A*-21	

© Gunnar Gotshalks!

Generalization of f-value definition!

◊  For a single node we have  
!
»  f (N) = g (N) + h (N)!

A*-22	

© Gunnar Gotshalks!

Generalization of f-value definition – 2!

◊  For a single node we have  
!
»  f (N) = g (N) + h (N)!

◊  For a tree with root node N we have, where the Sj are sub-
trees of N  
!
»  f (T) = min (f (Sj))!

A*-23	

© Gunnar Gotshalks!

Expand parameter diagram!

Nodes at boundary of expansion have f > Bound!

Expansion

S

Tree

N

Path

Tree1 = Tree + Expansion!

Expand is the main routine!
for the A* algorithm!

A*-24	

© Gunnar Gotshalks!

Expand parameters for A*!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!

A*-25	

© Gunnar Gotshalks!

Expand parameters for A* – 2!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!
» Tree – subtree at the end of Path!

A*-26	

© Gunnar Gotshalks!

Expand parameters for A* – 3!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!
» Tree – subtree at the end of Path!
» Bound – cost stops tree expansion!

A*-27	

© Gunnar Gotshalks!

Expand parameters for A* – 4!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!
» Tree – subtree at the end of Path!
» Bound – cost stops tree expansion!
» Tree1 – Tree expanded until f(N) > Bound!

A*-28	

© Gunnar Gotshalks!

Expand parameters for A* – 5!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!
» Tree – subtree at the end of Path!
» Bound – cost stops tree expansion!
» Tree1 – Tree expanded until f(N) > Bound!
» Solved – “yes” when goal is found!

A*-29	

© Gunnar Gotshalks!

Expand parameters for A* – 6!

◊  Prolog implementation for A* with the main routine!
» Expand (Path, Tree, Bound, Tree1, Solved, Solution)!

◊  Where!
» Path – between start and start of subtree Tree!
» Tree – subtree at the end of Path!
» Bound – cost stops tree expansion!
» Tree1 – Tree expanded until f(N) > Bound!
» Solved – “yes” when goal is found!
» Solution – path to goal when it is found!

A*-30	

© Gunnar Gotshalks!

Admissibility!

» What does admissible mean?!

A*-31	

© Gunnar Gotshalks!

Admissibility – 2!

» What does admissible mean? 
!

> Acceptable or valid 
!

A*-32	

© Gunnar Gotshalks!

Admissibility – 3!

» What does admissible mean? 
!

> Acceptable or valid 
!
–  Especially as evidence in a court of law	

A*-33	

© Gunnar Gotshalks!

Admissibility of a search algorithm!

» When would a search algorithm be considered to
be admissible?!

A*-34	

© Gunnar Gotshalks!

Admissibility of a search algorithm – 2!

» When would a search algorithm be considered to
be admissible? 
!

>  If it is guaranteed to find an optimal solution!

A*-35	

© Gunnar Gotshalks!

Admissibility of A*!

»  Is A* admissible?!

A*-36	

© Gunnar Gotshalks!

Admissibility of A* – 2!

»  Is A* admissible?!
> Yes, with necessary conditions!

A*-37	

© Gunnar Gotshalks!

Admissibility of A* – 3!

»  Is A* admissible?!
> Yes, with necessary conditions!

» What are those conditions?!

A*-38	

© Gunnar Gotshalks!

Admissibility of A* – 4!

»  Is A* admissible?!
> Yes, with necessary conditions!

» What are those conditions?!
> h(N) ≤ h*(N) for all nodes in the state space!

A*-39	

© Gunnar Gotshalks!

Admissibility of A* – 5!

»  Is A* admissible?!
> Yes, with necessary conditions!

» What are those conditions?!
> h(N) ≤ h*(N) for all nodes in the state space!

» What is h*(N)?!

A*-40	

© Gunnar Gotshalks!

Admissibility of A* – 6!

»  Is A* admissible?!
> Yes, with necessary conditions!

» What are those conditions?!
> h(N) ≤ h*(N) for all nodes in the state space!

» What is h*(N)?!
> The actual cost of the minimum cost path from

N to the goal!

A*-41	

© Gunnar Gotshalks!

Admissibility of A* – 7!

»  Is A* admissible?!
> Yes, with necessary conditions!

» What are those conditions?!
> h(N) ≤ h*(N) for all nodes in the state space!

» What is h*(N)?!
> The actual cost of the minimum cost path from

N to the goal!

Pick an h(N) that is optimistic!

A*-42	

© Gunnar Gotshalks!

Trivial Optimistic h(N)!

» What is a trivial optimistic h(N)?!

A*-43	

© Gunnar Gotshalks!

Trivial optimistic h(N) – 2!

» What is a trivial optimistic h(N)?!
> h(N) = 0!

A*-44	

© Gunnar Gotshalks!

Trivial optimistic h(N) – 3!

» What is a trivial optimistic h(N)?!
> h(N) = 0!

» What is the problem with this choice?!

A*-45	

© Gunnar Gotshalks!

Trivial optimistic h(N) – 4!

» What is a trivial optimistic h(N)?!
> h(N) = 0!

» What is the problem with this choice?!
> Gives poor guidance for a search 
!

A*-46	

© Gunnar Gotshalks!

Trivial optimistic h(N) – 5!

» What is a trivial optimistic h(N)?!
> h(N) = 0!

» What is the problem with this choice?!
> Gives poor guidance for a search 
!

> All possible expansion nodes are equally
“good”!

A*-47	

© Gunnar Gotshalks!

Optimal optimistic h(N)!

» What would be an optimal optimistic h(N)?!

A*-48	

© Gunnar Gotshalks!

Optimal optimistic h(N) – 2!

» What would be an optimal optimistic h(N)?!
> h(N) = h*(N)!

A*-49	

© Gunnar Gotshalks!

Optimal optimistic h(N) – 3!

» What would be an optimal optimistic h(N)?!
> h(N) = h*(N)!

» What is the problem in getting the optimal h(N)?!

A*-50	

© Gunnar Gotshalks!

Optimal optimistic h(N) – 3!

» What would be an optimal optimistic h(N)?!
> h(N) = h*(N)!

» What is the problem in getting the optimal h(N)?!
> Finding the optimal h(N) is the essence of the

difficulty in finding a solution to a problem!

A*-51	

© Gunnar Gotshalks!

Optimal optimistic h(N) – 4!

» What would be an optimal optimistic h(N)?!
> h(N) = h*(N)!

» What is the problem in getting the optimal h(N)?!
> Finding the optimal h(N) is the essence of the

difficulty in finding a solution to a problem!

In practice finding h(N) that minimizes the  
space that is searched and is admissible  
is the main difficulty!

A*-52	

© Gunnar Gotshalks!

Distance between states!

◊  Many heuristics depend upon distance between states!

A*-53	

© Gunnar Gotshalks!

Distance between states – 2!

◊  Many heuristics depend upon distance between states!
> For example in the travelling salesman problem

it is the distance between cities!

A*-54	

© Gunnar Gotshalks!

Distance between states – 3!

◊  Many heuristics depend upon distance between states!
> For example in the travelling salesman problem

it is the distance between cities!
>  In the tile-puzzle it is the distance the tiles are

from the goal position!

!

L A T E

Y O U R

M I N D

P A R

A*-55	

© Gunnar Gotshalks!

Common distance heuristics!

» What are two common distance heuristics?!

A*-56	

© Gunnar Gotshalks!

Common distance heuristics – 2!

» What are two common distance heuristics? 
!

> Euclidean distance  
!

> Manhattan distance!

A*-57	

© Gunnar Gotshalks!

Euclidean distance!

» What is Euclidean distance?!

A*-58	

© Gunnar Gotshalks!

Euclidean distance – 2!

◊  The Euclidean distance between point (X1,Y1) and point
(X2, Y2) 
!
»  Is the straight line distance between the points

based on Euclidean geometry!

D = (X1! X2)2 + (Y1!Y 2)2

A*-59	

© Gunnar Gotshalks!

Manhattan distance!

» What is Manhattan distance?!

A*-60	

© Gunnar Gotshalks!

Manhattan distance – 2!

◊  The Manhattan distance between point (X1, Y2) and point
(X2,Y2) 
!
»  Is the sum of the horizontal and vertical distances

between the two points.!

D = abs(X1! X2)+ abs(Y1!Y 2)

A*-61	

© Gunnar Gotshalks!

Manhattan distance – 3!

» Manhattan is one of the boroughs in New York with
rectangular blocks. To travel between two points
you can only move parallel to one or the other of
the X or Y “axes” along the streets!

!
L A T E

Y O U R

M I N D

P A R

The empty square can only!
travel parallel to the axes!

