A* Algorithm

Basics of A* * algorithm

\diamond You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
» How do you select the best path to extend?

Basics of A* algorithm - 2

\diamond You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
» How do you select the best path to extend?
> For the last node on each path have two costs
" What are they?

Basics of A* algorithm - 3

\diamond You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
» How do you select the best path to extend?
> For the last node on each path have two costs
" What are they?
> (1) the real cost of following the path

- $g(n)$ where n is the last vertex in the path

Basics of A* algorithm - 4

\diamond You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
» How do you select the best path to extend?
> For the last node on each path have two costs
" What are they?
$>(1)$ the real cost of following the path
$-g(n)$ where n is the last vertex in the path
$>$ (2) a heuristic estimate of the cost of the optimal extension of the path to the goal vertex

- $h(n)$ where n is the last vertex in the path

Basics of A* algorithm - 5

\diamond You are in the middle of a search and have a set of potential paths P1 .. Pn to explore.
» How do you select the best path to extend?
> For the last node on each path have two costs

- (1) the real cost of following the path
- $\mathbf{g}(\mathrm{n})$ where \mathbf{n} is the last vertex in the path
- (2) a heuristic estimate of the cost of the optimal extension of the path to the goal vertex
- $h(n)$ where n is the last vertex in the path
" The estimated cost for the full path to the goal is

$$
>f(n)=g(n)+h(n)
$$

Basics of A* algorithm - 3

S .. N is the known path $\mathrm{g}(\mathrm{N})$ is its real cost

N .. G is the path yet to be found $h(N)$ is its estimated cost

Bratko Figure 12.2

$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta

Put "write('Case1 '), S=[NIP], write(S), nl," just before "goal" in expand case 1 to see the sequence in which the path is expanded.

A* data structures - leaf node

\diamond A leaf is a single node tree $-I(N, F / G)$

Lower case L

A* data structures - leaf node - 2

\diamond A leaf is a single node tree $-I(N, F / G)$
" N is a node in the state-space

A* data structures - leaf node - 3

$\diamond A$ leaf is a single node tree $-I(N, F / G)$
" N is a node in the state-space
" $G=g(n)$ is the cost of the path to N

A* data structures - leaf node - 4

$\diamond A$ leaf is a single node tree $-I(N, F / G)$
" N is a node in the state-space
» G is the cost of the path to N
" F is $f(N)=G+h(N)$

A* data structures - tree

$\diamond A$ tree $-t(N, F / G$, Sub-trees $)$

A* data structures - tree - 2

$\diamond A$ tree $-t(N, F / G$, Sub-trees $)$
> N is a node in the state-space

A* data structures - tree - 3

$\diamond A$ tree $-t(N, F / G$, Sub-trees $)$
" N is a node in the state-space
" $G=g(n)$ is the cost of the path to N

A* data structures - tree - 4

$\diamond A$ tree $-t(N, F / G$, Sub-trees $)$
" N is a node in the state-space
» $G=g(n)$ is the cost of the path to N
» F is the updated value of $f(N)$
$>\mathrm{f}$-value of the most promising successor of N

A* data structures - tree - 5

$\diamond A$ tree $-t(N, F / G$, Sub-trees)
" N is a node in the state-space
» $G=g(n)$ is the cost of the path to N
» F is the updated value of $f(N)$
$>\mathrm{f}$-value of the most promising successor of N
» Sub-trees is a list of the sub-trees from N

Example for Figure 12.2

When S is expanded, the existing tree is represented as

$$
t(S, 7 / 0,[I(A, 7 / 2), I(E, 9 / 2)])
$$

Example for Figure 12.2-2

$$
t(S, 7 / 0,[I(A, 7 / 2), I(E, 9 / 2)])
$$

The most promising node to expand is A

Example for Figure 12.2-3

After S and A have been expanded we have

$$
\begin{aligned}
& \text { [l(C, 10/6)])])]) }
\end{aligned}
$$

Updated $-E$ is the most promising successor

$f(n)$ in mocha $=g(n)$ in clover $+h(n)$ in magenta

Generalization of f-value definition

\diamond For a single node we have

$$
\gg f(N)=g(N)+h(N)
$$

Generalization of f-value definition - 2

\diamond For a single node we have

$$
\gg f(N)=g(N)+h(N)
$$

\diamond For a tree with root node N we have, where the S_{j} are subtrees of N

$$
\geqslant f(T)=\min \left(f\left(S_{j}\right)\right)
$$

Expand parameter diagram

Expand is the main routine for the A^{*} algorithm

Tree1 $=$ Tree $\boldsymbol{+}$ Expansion

Nodes at boundary of expansion have $f>$ Bound

Expand parameters for A^{*}

\diamond Prolog implementation for A^{*} with the main routine " Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
" Path - between start and start of subtree Tree

Expand parameters for $\mathbf{A}^{*} \mathbf{- 2}$

\diamond Prolog implementation for A^{*} with the main routine » Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
» Path - between start and start of subtree Tree
" Tree - subtree at the end of Path

Expand parameters for $\mathbf{A}^{*} \mathbf{- 3}$

\diamond Prolog implementation for A^{*} with the main routine " Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
" Path - between start and start of subtree Tree
» Tree - subtree at the end of Path
" Bound - cost stops tree expansion

Expand parameters for A*-4

\diamond Prolog implementation for A^{*} with the main routine » Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
» Path - between start and start of subtree Tree
" Tree - subtree at the end of Path
» Bound - cost stops tree expansion
" Tree1 - Tree expanded until f(N) > Bound

Expand parameters for $\mathrm{A}^{*} \mathbf{- 5}$

\diamond Prolog implementation for A^{*} with the main routine » Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
» Path - between start and start of subtree Tree
» Tree - subtree at the end of Path
» Bound - cost stops tree expansion
» Tree1 - Tree expanded until f(N) > Bound
"Solved - "yes" when goal is found

Expand parameters for $\mathrm{A}^{*} \mathbf{- 6}$

\diamond Prolog implementation for A^{*} with the main routine » Expand (Path, Tree, Bound, Tree1, Solved, Solution)
\diamond Where
» Path - between start and start of subtree Tree
" Tree - subtree at the end of Path
» Bound - cost stops tree expansion
" Tree1 - Tree expanded until f(N) > Bound
"Solved - "yes" when goal is found
"Solution - path to goal when it is found

Admissibility

" What does admissible mean?

Admissibility - 2

" What does admissible mean?
> Acceptable or valid

Admissibility - 3

" What does admissible mean?
> Acceptable or valid

- Especially as evidence in a court of law

Admissibility of a search algorithm

» When would a search algorithm be considered to be admissible?

Admissibility of a search algorithm - 2

» When would a search algorithm be considered to be admissible?
> If it is guaranteed to find an optimal solution

Admissibility of A *

» Is A* admissible?

Admissibility of $\mathbf{A}^{*} \mathbf{- 2}$

》 Is A^{*} admissible?
> Yes, with necessary conditions

Admissibility of A $^{*} \mathbf{- 3}$

》 Is A^{*} admissible?
> Yes, with necessary conditions
" What are those conditions?

Admissibility of A $^{*} \mathbf{- 4}$

》 Is A* admissible?
> Yes, with necessary conditions

》 What are those conditions?
$>h(N) \leq h *(N)$ for all nodes in the state space

Admissibility of $\mathrm{A}^{*} \mathbf{- 5}$

》 Is A^{*} admissible?
> Yes, with necessary conditions
» What are those conditions?
$>h(N) \leq h *(N)$ for all nodes in the state space
" What is $\mathrm{h}^{*}(\mathrm{~N})$?

Admissibility of $A^{*} \mathbf{- 6}$

》 Is A^{*} admissible?
> Yes, with necessary conditions
" What are those conditions?
$>h(N) \leq h *(N)$ for all nodes in the state space
" What is $\mathrm{h}^{*}(\mathrm{~N})$?
> The actual cost of the minimum cost path from N to the goal

Admissibility of A $^{*} \mathbf{- 7}$

》 Is A^{*} admissible?
> Yes, with necessary conditions
» What are those conditions?
$>h(N) \leq h *(N)$ for all nodes in the state space
" What is $\mathrm{h}^{*}(\mathrm{~N})$?
> The actual cost of the minimum cost path from N to the goal

Pick an $h(N)$ that is optimistic

Trivial Optimistic h(N)

" What is a trivial optimistic $\mathrm{h}(\mathrm{N})$?

Trivial optimistic $\mathbf{h (N)} \mathbf{- 2}$

" What is a trivial optimistic $h(N)$?
 $>\mathrm{h}(\mathrm{N})=0$

Trivial optimistic $\mathbf{h (N)} \mathbf{- 3}$

" What is a trivial optimistic $\mathrm{h}(\mathrm{N})$?
$>h(N)=0$
» What is the problem with this choice?

Trivial optimistic $\mathbf{h (N)} \mathbf{- 4}$

" What is a trivial optimistic $\mathrm{h}(\mathrm{N})$?
$>h(N)=0$
" What is the problem with this choice?
> Gives poor guidance for a search

Trivial optimistic $\mathbf{h (N)} \mathbf{- 5}$

" What is a trivial optimistic $h(N)$?
$>h(N)=0$
" What is the problem with this choice?
> Gives poor guidance for a search
> All possible expansion nodes are equally "good"

Optimal optimistic $\mathbf{h (N)}$

" What would be an optimal optimistic $\mathrm{h}(\mathrm{N})$?

Optimal optimistic $h(N)$ - 2

" What would be an optimal optimistic $\mathrm{h}(\mathrm{N})$?

$$
>\mathrm{h}(\mathrm{~N})=\mathrm{h}^{*}(\mathrm{~N})
$$

Optimal optimistic $\mathbf{h}(\mathrm{N})$ - 3

" What would be an optimal optimistic $\mathrm{h}(\mathrm{N})$?
$>h(N)=h^{*}(N)$
" What is the problem in getting the optimal $h(N)$?

Optimal optimistic $\mathbf{h}(\mathrm{N})$ - 3

" What would be an optimal optimistic $\mathrm{h}(\mathrm{N})$?
$>h(N)=h *(N)$
» What is the problem in getting the optimal $h(N)$?
$>$ Finding the optimal $h(N)$ is the essence of the difficulty in finding a solution to a problem

Optimal optimistic h(N) - 4

" What would be an optimal optimistic $\mathrm{h}(\mathrm{N})$?
$>h(N)=h^{*}(N)$
» What is the problem in getting the optimal $h(N)$?
$>$ Finding the optimal $h(N)$ is the essence of the difficulty in finding a solution to a problem

In practice finding $h(N)$ that minimizes the space that is searched and is admissible is the main difficulty

Distance between states

\diamond Many heuristics depend upon distance between states

Distance between states - 2

\diamond Many heuristics depend upon distance between states
> For example in the travelling salesman problem it is the distance between cities

Distance between states - 3

\diamond Many heuristics depend upon distance between states
> For example in the travelling salesman problem it is the distance between cities
$>$ In the tile-puzzle it is the distance the tiles are from the goal position

\mathbf{L}	\mathbf{A}	\mathbf{T}	\mathbf{E}
\mathbf{Y}	\mathbf{O}	\mathbf{U}	\mathbf{R}
\mathbf{M}	\mathbf{I}	\mathbf{N}	\mathbf{D}
\mathbf{P}	\mathbf{A}	R	

Common distance heuristics

" What are two common distance heuristics?

Common distance heuristics - 2

" What are two common distance heuristics?
> Euclidean distance
> Manhattan distance

Euclidean distance

" What is Euclidean distance?

Euclidean distance - 2

\diamond The Euclidean distance between point $(\mathrm{X} 1, \mathrm{Y} 1)$ and point (X2, Y2)
» Is the straight line distance between the points based on Euclidean geometry

$$
D=\sqrt{(X 1-X 2)^{2}+(Y 1-Y 2)^{2}}
$$

Manhattan distance

» What is Manhattan distance?

Manhattan distance - 2

\diamond The Manhattan distance between point (X1, Y2) and point (X2,Y2)
" Is the sum of the horizontal and vertical distances between the two points.

$$
D=a b s(X 1-X 2)+a b s(Y 1-Y 2)
$$

Manhattan distance - 3

" Manhattan is one of the boroughs in New York with rectangular blocks. To travel between two points you can only move parallel to one or the other of the X or Y "axes" along the streets

\mathbf{L}	\mathbf{A}	\mathbf{T}	E
\mathbf{Y}	\mathbf{O}	\mathbf{U}	\mathbf{R}
\mathbf{M}	I	N	D
\mathbf{P}	A	R	

The empty square can only travel parallel to the axes

